Experimental application of thermoelectric devices to the Rankine cycle

نویسندگان

  • J. Siviter
  • A. Montecucco
  • A. Knox
چکیده

Thermal plants operating on the Rankine cycle are by far the most common method of global electrical power generation. The Rankine cycle, first developed in the late 19 century, continues to this day to be one of the most important practical implementations of a heat engine. Innovation and enhancement of this cycle continue and today’s emphasis is directed towards reduced carbon emissions from the combustion of fossil fuel as well as improvement of the absolute cycle efficiency. This paper presents a technique to increase in the Rankine cycle efficiency through reducing the waste heat rejected during the condensation phase by use of a thermoelectric heat pump. Firstly, this work derives a theoretical statement of the required Coefficient of Performance for viable economic operation. This is followed by an experimental investigation to determine if the calculated performance is available using today’s thermoelectric technology. © 2015 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICAE

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rankine cycle efficiency gain using thermoelectric heat pumps

The Rankine cycle remains the dominant method of thermal plant electricity generation in the world today. The cycle was described over 150 years ago and significant performance advances continue to be realised. On-going metallurgy research has enabled the operating pressure and temperature of the boiler and turbine to be increased, thereby improving the cycle efficiency. The ubiquitous use of t...

متن کامل

The energy and exergy analysis of a novel cogeneration organic Rankine power and two-stage compression refrigeration cycle

The energy crisis in recent years has led to the use of thermodynamic cycles that work based on renewable energies. Low-temperature cycles—such as organic cycles—are suitable strategies for the application of renewable energies. The present study proposes a novel cycle through the integration of a two-stage compression refrigeration cycle with a combined Rankine power and ejector refrigerat...

متن کامل

Coefficient of Performance Optimization of a Single Stage Thermoelectric Cooler

In thermoelectric coolers (TECs) applied external voltage potential is generated to a temperature difference based on the Peltier effect. Main and basic structure of TECs is in the form of single stage device. Due to the low efficiency, especially low coefficient of performance (COP) of thermoelectric coolers, optimal design of geometrical parameters of such devices is vital. For this purpose, ...

متن کامل

More about Thermosyphone Rankine Cycle Performance Enhancement (RESEARCH NOTE)

The heat pipe applications have been coupled with the renewable energy such as solar energy, waste heat and geothermal energy. Thermosyphon Rankine Cycle (TRC) is a vertical wickless heat pipe engine. In this engine, the turbine is installed between the insulated section and a condenser section of thermosyphon. The mechanical energy developed by the turbine can be converted to electricity, by d...

متن کامل

Exergy Analysis of a Novel Combined System Consisting of a Gas Turbine, an Organic Rankine Cycle and an Absorption Chiller to Produce Power, Heat and Cold

The current work investigates the exergy analysis of a new system to generate power, heat, and refrigeration. In the proposed system, the heat loss of a gas turbine (GT) is first recovered by a Heat Recovery Steam Generator (HRSD), then by an Organic Rankine Cycle (ORC) to generate warm water and additional power, respectively. In the ORC, reheating is used to increase the output power, the req...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015